Adaptive Informative Planning for Mobile Robots with Deployable Sensors

P. Michael Furlong, Michael Dille, Uland Wong, Terry Fong 10 February 2021

Risk Constraints Planetary Robots

- Planetary missions have a risk posture which curtails directions for exploration.
- Scientific value is inversely proportional to terrain safety.
- But we don't know what the terrain is like until we get there!

Image source: Robotic Systems Lab

Risk Constraints Planetary Robots

Image source: Robotic Systems Lab

Can We Sample Without Sending the Robot?

- Yes! Small, remotely deployed daughtercraft containing sensors
- E.g., NASA Ames
 (Michael Dille and Uland Wong) has developed PHALANX, a deployable sensor system for mobile robots

M. Dille et al. PHALANX: Projectile Hordes for Advanced Long-term & Networked Exploration, IEEE Aerospace Conference (2020).

PHALANX - A Brief Overview

- Extends robot sensing reach
- Small sensor packages
 - o < 250g, < 75mm diam
- Different sensor types
 - Heterogeneous,
 mission-specific tailoring
- Payload of 25-50 sensors
- Mortar delivery system
 - o 10-100m deployment range

But....how do you choose?

Need to play off the best deployment of sensors against your expectation of what the world looks like.

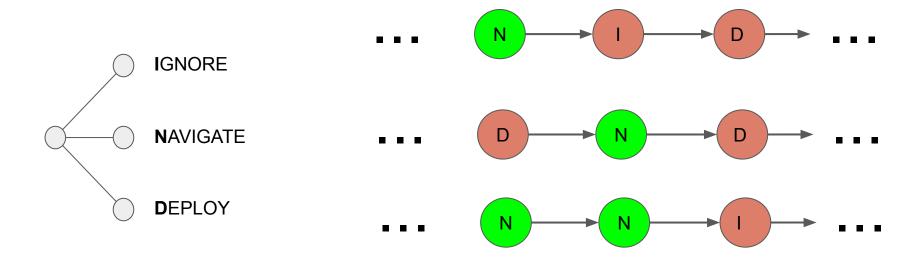
- Simulate risk and observations from precursor (e.g. pre-mission) data.
- React in situ as needed.

Concept of Operations - Collect Precursor Data

Concept of Operations - Identify Valuable Samples

Concept of Operations - Plan a Tour

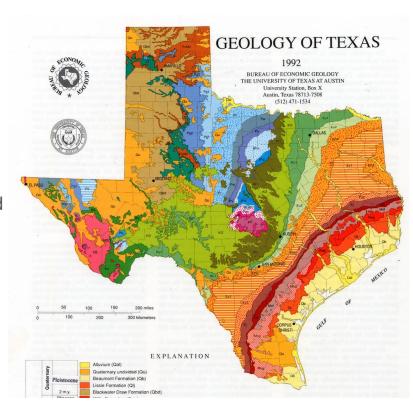
Concept of Operations - Plan a Tour


How do we make good decisions?

Make the best decision now

Assuming we behave optimally later

How do we make good decisions?



Make the best decision now

Given average return over future deployments with sampled future terrain safety.

Simulation for Algorithm Comparison

- 100 Locations
- Probability of hazard ~ Uniform(0,1)
- 12 Classes of objects (science targets)
 - Modelling underlying distribution(s)
- Baselines:
 - o Random: Sample unsafe locations on coin flip
 - Greedy: Sample unsafe locations as encountered

Performance - Uniform Abundance

Performance - Exponential Abundance

Performance - Dominating Class

Conclusions

- 1. As good or better for tested scenarios
- 2. Useful formalism for decision-making/mission-planning
- 3. Room for improvement
 - a. Future estimated value implementation is naive
 - b. On-line updating of safety estimate

Contact: michael.furlong@us.kbr.com michael.dille@nasa.gov